杨哲

时间:2018-12-20

最后学位:重庆大学经济学博士
岗位职称:副教授,讲席副教授              
研究领域:博弈论、数理经济学、非线性分析
教学课程:数学分析、微观经济学、博弈论与信息经济学
办公室:经济学院楼411
电  话:02165902931
Emailyang.zhe@sufe.edu.cn
通讯地址:上海市国定路777号 上海财经大学经济学院
邮    编:200433




教师简介
学习经历

2009.9——2012.6,重庆大学经济学博士生

2006.9——2009.6,贵州大学应用数学硕士生

2002.9——2006.6,南京理工大学信息与计算科学本科生


职业经历

2012.7——2013.6,重庆工商大学经济学院

2013.7至今,上海财经大学经济学院

发表论文

2013.6.之前

[1] Yang Zhe,Pu Yong Jian,Essential Stability  of Solutions for Maximal Element Theorem with Applications, J Optim  Theory Appl (SCI核心),2011,  150(2): 284—297.
[2] Yang Zhe,Pu Yong Jian,Existence and  stability of minimax regret equilibria,J Glob Optim,(SCI核心), 2012,54(1): 17-26.
[3] Yang Zhe,Pu Yong Jian,Existence and  Stability of Solutions for Maximal Element Theorem on Hadamard Manifolds with  Applications. Nonlinear Analysis Series A: Theory, Methods &  Applications (SCI核心), 2012, 75(2), 516—525.
[4] Pu Yong Jian,Yang Zhe,Stability of solutions  for variational relation problems with applications. Nonlinear Analysis  Series A: Theory, Methods & Applications (SCI核心), 2012, 75(4), 1758—1767.
[5] Yang Zhe,Pu Yong Jian,On existence and  essential components for solution set for system of strong vector  quasi-equilibrium problems,J Glob Optim,(SCI核心), 2013, 55(2) ,253-259.
[6] Yang Zhe,Pu Yong Jian,Generalized  Knaster-Kuratowski-Mazurkiewicz Theorem without Convex Hull, J Optim  Theory Appl (SCI核心),July  2012, Volume 154, Issue 1, pp 17-29..
[7] Yang Zhe,Pu Yong Jian,Generalized  Browder-type fixed point theorem with strongly geodesic convexity on Hadamard  manifolds with applications,Indian Journal of Pure  and Applied Mathematics (SCI核心),April 2012, Volume 43, Issue 2, pp 129-144
[8] Pu Yong Jian,Yang Zhe,Variational Relation  Problems without the KKM Property with Applications, Journal of  Mathematical Analysis and Applications (SCI核心).,393 (2012) 256—264.
[9] 杨哲,蒲勇健,不确定性下多目标博弈中弱Pareto—NS均衡的存在性,系统工程理论与实践 (EI核心),2013,3.
[10] 杨哲,蒲勇健,不确定性下多主从博弈中均衡的存在性,控制与决策(EI核心),2012, 5.
[11] 杨哲,蒲勇健,大博弈中Nash均衡的存在性,系统科学与数学,2010,12,1606-1612.
[12] 蒲勇健,杨哲,轻微利他弱Pareto-Nash均衡,系统科学与数学,2010,9,1259-1266.
[13] 蒲勇健,杨哲,多目标大博弈中弱Pareto-Berg均衡的存在性,系统科学与数学(CSCD核心),31(12) (2011, 12), 1613–1621.
[14] 杨哲,蒲勇健,广义不确定下广义多目标博弈弱Pareto-Nash均衡点集的存在性与本质连通区,系统科学与数学,32(1) (2012, 1), 70–78.
[15] 杨哲,蒲勇健,利他扰动与Nash均衡点集的利他稳定性,经济数学,2012,12.


2013年

[16] 杨哲,蒲勇健,单主多从博弈中中级社会Nash均衡的存在性与应用,系统科学与数学(CSCD核心),2013,33(7):777-784.
[17] 杨哲,蒲勇健,广义不确定性下广义博弈中NS均衡的存在性,中国管理科学(权威B刊),2013,21(5):165-171.


2014年

[18] Yang Zhe,On existence and essential stability of solutions of  symmetric variational relation problems, Journal of Inequalities and  Applications (SCI核心) 2014, 2014:5.
[19] Yang Zhe,Some new generalizations of nonempty intersection  theorems without convexity assumptions and essential stability of their  solution set with applications, Fixed Point Theory and Applications (SCI核心) 2014, 2014: 3.
[20] Yang Zhe,On the existence and stability of solutions of a mixed  general type of variational relation problems,Journal  of Inequalities and Applications (SCI核心) 2014, 2014:337.
[21] Yang Zhe,Some generalizations of common fixed point problems with  applications,Fixed Point Theory and Applications (SCI核心) 2014,2014:189.
[22]王能发;杨哲, 反需求函数集值情况下单主多从寡头竞争模型,运筹与管理,2014年第2期.
[23] Lefeng Shi, Yang  Zhe,Stable Analysis of Solution Set for  System of Quasivariational Relations with Applications,Journal of Applied Mathematics (SCI核心) 2014,Volume 2014, Article ID 109616, 7  pages


2015年

[24]Yang Zhe,Existence of solutions for a system of quasi-variational  relation problems and some applications, Carpathian Journal of  Mathematics(SCI核心),31  (2015), No. 1, 135 - 142.
[25] 杨哲,基于讨价还价理论的企业集团组建分析,管理工程学报(权威B刊),2015,4期.
[26] 杨哲, 广义不确定性下非合作博弈中Berge_NS均衡的存在性, 系统科学与数学(CSCD核心), 2015年09期
[27] 杨哲,无凸假定条件的不动点定理及其应用(英文), 应用数学(CSCD核心),2015年01期


2016年

[28] Yang Zhe,  Existence and generic stability of cooperative equilibria for  multi-leader-multi-follower games. J Glob Optim (SCI核心,管理学三类), (2016) 65:563–573
[29] Yang Zhe,  Existence of Solutions of Generalized Quasi-Variational Relation Problems by  the Inductive Relations and Some Applications, Journal of Systems  Science and Complexity (EI核心), 2016 Vol. 29 (1): 219-227
[30] Jian Yu,  Neng-Fa Wang and Zhe Yang. Equivalence results between Nash equilibrium theorem  and some fixed point theorems. Fixed Point Theory and Applications (2016)  2016:69.
[31] Jian Yu, Zhe Yang, Neng-Fa Wang. Further results  on structural stability and robustness to bounded rationality. Journal  of Mathematical Economics (经济学二类) 67 (2016) 49–53


2017年

[32] Yang Zhe,  Essential stability of α-core, International Journal of Game Theory(经济学三类), (2017) 46:13–28
[33] 王能发,杨哲,刘自鑫, 一般经济均衡价格点集的通有稳定性和本质连通区, 系统科学与数学, 37(1)(2017, 1).  
[34] Yang Zhe, Dawen Meng, Hadamard well-posedness of the  $/alpha-$core, Journal of Mathematical Analysis and Applications (SCI一区). Volume 452, Issue 2, 15 August 2017, Pages 957–969.  
[35] Yang Zhe, Dawen Meng, Anqiang Wang, On the existence of ideal Nash  equilibria in discontinuous games with infinite criteria, Operations  Research Letters (管理学二类),  , Volume 45, Issue 4, July 2017, Pages 362-365  
[36] Yang Zhe, Some infinite-player generalizations of Scarf's theorem:  Finite-coalition α-cores and weak α-cores. Journal of  Mathematical Economics (经济学二类), Volume  73, December 2017, Pages 81-85  
[37] Neng-Fa Wang and Zhe Yang, The well-posedness for generalized fuzzy  games, Journal of Systems Science and Complexity (EI核心), (2017) 30: 921–931.


2018年

[38]Yang Zhe,  Anqiang Wang, Existence and stability of $/alpha-$core for fuzzy  games, Fuzzy Sets and Systems (SCI一区). Volume 341, 15 June 2018, Pages 59-68
[39] Yang Zhe,  Some generalizations of Kajii's theorem to games with infinitely many players, Journal of Mathematical Economics (经济学二类), Volume 76, May 2018, Pages 131-135.
[40] Dawen Meng, Guoqiang Tian, Zhe Yang, Two-agent collusion proof implementation with arbitrage and correlations, Review of Economic Design,2017.9 ,Vol. 21 ,177-229.


2019年

[41]Zhe Yang, Haiqun Zhang ,Essential stability of cooperative equilibria for population games,Optimization Letters (SCI) October 2019, Volume 13, Issue 7, pp 1573–1582
[42] Zhe Yang, Qingbin Gong ,Existence of Weakly Cooperative Equilibria for Infinite-Leader-Infinite-Follower Games, Journal of the Operations Research Society of China (2019) Online.
[43]Zhe Yang, Haiqun Zhang , NTU core, TU core and strong equilibria of coalitional population games with infinitely many pure strategies, Theory and Decision (经济学三类) (2019) September 2019, Volume 87, Issue 2, pp 155–170
[44]Zhe Yang,Xian Zhang,Quantum repeated games with continuous-variable strategies,Physics Letters A Volume 383, Issue 24, 22 August 2019, Pages 2874-2877.
[45]Zhe Yang,A coalitional extension of generalized fuzzy games,Fuzzy Sets and Systems (2019) Online
[46]Qingbin Gong, Zhe Yang,Arbitrage, speculation and futures price fluctuations with boundedly rational and heterogeneous agents,Journal of Economic Interaction and Coordination (SSCI二区) (2019) Online.
[47]Zhe Yang, George Xianzhi Yuan, Some generalizations of Zhao’s theorem: Hybrid solutions and weak hybrid solutions for games with nonordered preferences, Journal of Mathematical Economics (经济学二类), Volume 84, October 2019, Pages 94-100

项目情况
2013上海教委晨光计划:非连续博弈的合作均衡
2015国家自然科学基金:合作均衡的本质稳定性研究
返回原图
/