989期 4月16日:Model Averaging Estimation for High-dimensional Covariance Matrix with a Network Structure(张新雨,副研究员, 中国科学院数学与系统科学研究院)

时间:2019-04-12

【主题】Model Averaging Estimation for High-dimensional Covariance Matrix with a Network Structure  

【报告人】张新雨 (副研究员, 中国科学院数学与系统科学研究院)  

【时间】4月16日(星期二) 15:30-17:00  

【地点】401  

【语言】英文  

【摘要/Abstract】In this paper, we develop a model averaging method to estimate the high-dimensional covariance matrix, where the candidate models are constructed by different orders of the polynomial functions. We propose a Mallows-type model averaging criterion and select the weights by minimizing this criterion, which is an unbiased estimator of the expected in-sample squared error plus a constant. Then, we prove the asymptotic optimality of the resulting model average covariance (MAC) estimators. Furthermore, numerical simulations and a case study on Chinese airport network structure data are conducted to demonstrate the usefulness of the proposed approaches.



返回原图
/