上海财经大学经济学院
学院人员
当前位置:首页 >> 学院人员 >> 教职员工 >> 经济系 >> 西方经济学 >> 杨哲
杨哲
最后学位:重庆大学经济学博士
岗位职称:副教授
研究领域:博弈论、数理经济学、非线性分析
教学课程:数学分析、微观经济学、博弈论与信息经济学
办公室:经济学院楼411
电 话:02165902931
Emailyang.zhe@sufe.edu.cn
通讯地址:上海市国定路777号 上海财经大学经济学院
邮 编:200433


教师简介
学习经历

2009.9——2012.6,重庆大学经济学博士生

2006.9——2009.6,贵州大学应用数学硕士生

2002.9——2006.6,南京理工大学信息与计算科学本科生


职业经历

2012.7——2013.6,重庆工商大学经济学院

2013.7至今,上海财经大学经济学院

发表论文
2013.6.之前

[1] Yang Zhe (通讯作者),Pu Yong Jian,Essential Stability of Solutions for Maximal Element Theorem with Applications, J Optim Theory Appl (SCI核心),2011, 150(2): 284—297.

[2] Yang Zhe(通讯作者),Pu Yong Jian,Existence and stability of minimax regret equilibria,J Glob Optim,(SCI核心), 2012,54(1): 17-26.

[3] Yang Zhe(通讯作者),Pu Yong Jian,Existence and Stability of Solutions for Maximal Element Theorem on Hadamard Manifolds with Applications. Nonlinear Analysis Series A: Theory, Methods & Applications (SCI核心), 2012, 75(2), 516—525.

[4] Pu Yong Jian,Yang Zhe(通讯作者),Stability of solutions for variational relation problems with applications. Nonlinear Analysis Series A: Theory, Methods & Applications (SCI核心), 2012, 75(4), 1758—1767.

[5] Yang Zhe(通讯作者),Pu Yong Jian,On existence and essential components for solution set for system of strong vector quasi-equilibrium problems,J Glob Optim,(SCI核心), 2013, 55(2) ,253-259.

[6] Yang Zhe(通讯作者),Pu Yong Jian,Generalized Knaster-Kuratowski-Mazurkiewicz Theorem without Convex Hull, J Optim Theory Appl (SCI核心),July 2012, Volume 154, Issue 1, pp 17-29..

[7] Yang Zhe(通讯作者),Pu Yong Jian,Generalized Browder-type fixed point theorem with strongly geodesic convexity on Hadamard manifolds with applications,Indian Journal of Pure and Applied Mathematics (SCI核心),April 2012, Volume 43, Issue 2, pp 129-144

[8] Pu Yong Jian,Yang Zhe(通讯作者),Variational Relation Problems without the KKM Property with Applications, Journal of Mathematical Analysis and Applications (SCI核心).,393 (2012) 256—264.

[9] 杨哲(通讯作者),蒲勇健,不确定性下多目标博弈中弱Pareto—NS均衡的存在性,系统工程理论与实践 (EI核心),2013,3.

[10] 杨哲(通讯作者),蒲勇健,不确定性下多主从博弈中均衡的存在性,控制与决策(EI核心),2012, 5.

[11] 杨哲(通讯作者),蒲勇健,大博弈中Nash均衡的存在性,系统科学与数学,2010,12,1606-1612.

[12] 蒲勇健,杨哲(通讯作者),轻微利他弱Pareto-Nash均衡,系统科学与数学,2010,9,1259-1266.

[13] 蒲勇健,杨哲(通讯作者),多目标大博弈中弱Pareto-Berg均衡的存在性,系统科学与数学(CSCD核心),31(12) (2011, 12), 1613–1621.

[14] 杨哲(通讯作者),蒲勇健,广义不确定下广义多目标博弈弱Pareto-Nash均衡点集的存在性与本质连通区,系统科学与数学,32(1) (2012, 1), 70–78.

[15] 杨哲(通讯作者),蒲勇健,利他扰动与Nash均衡点集的利他稳定性,经济数学,2012,12.


2013年

[16] 杨哲(通讯作者),蒲勇健,单主多从博弈中中级社会Nash均衡的存在性与应用,系统科学与数学(CSCD核心),2013,33(7):777-784.

[17] 杨哲(通讯作者),蒲勇健,广义不确定性下广义博弈中NS均衡的存在性,中国管理科学(权威B刊),2013,21(5):165-171.


2014年

[18] Yang Zhe(通讯作者),On existence and essential stability of solutions of symmetric variational relation problems, Journal of Inequalities and Applications (SCI核心) 2014, 2014:5.

[19] Yang Zhe(通讯作者),Some new generalizations of nonempty intersection theorems without convexity assumptions and essential stability of their solution set with applications, Fixed Point Theory and Applications (SCI核心) 2014, 2014: 3.

[20] Yang Zhe(通讯作者),On the existence and stability of solutions of a mixed general type of variational relation problems,Journal of Inequalities and Applications (SCI核心) 2014, 2014:337.

[21] Yang Zhe(通讯作者),Some generalizations of common fixed point problems with applications,Fixed Point Theory and Applications (SCI核心) 2014,2014:189.

[22]王能发(通讯作者);杨哲, 反需求函数集值情况下单主多从寡头竞争模型,运筹与管理,2014年第2期.

[23] Lefeng Shi, Yang Zhe(通讯作者),Stable Analysis of Solution Set for System of Quasivariational Relations with Applications,Journal of Applied Mathematics (SCI核心) 2014,Volume 2014, Article ID 109616, 7 pages


2015年

[24]Yang Zhe(通讯作者),Existence of solutions for a system of quasi-variational relation problems and some applications, Carpathian Journal of Mathematics(SCI核心),31 (2015), No. 1, 135 - 142.

[25] 杨哲(通讯作者),基于讨价还价理论的企业集团组建分析,管理工程学报(权威B刊),2015,4期.

[26] 杨哲(通讯作者), 广义不确定性下非合作博弈中Berge_NS均衡的存在性, 系统科学与数学(CSCD核心), 2015年09期

[27] 杨哲(通讯作者),无凸假定条件的不动点定理及其应用(英文), 应用数学(CSCD核心),2015年01期


2016年

[28] Yang Zhe(通讯作者), Existence and generic stability of cooperative equilibria for multi-leader-multi-follower games. J Glob Optim (SCI核心,管理学三类), (2016) 65:563–573

[29] Yang Zhe(通讯作者), Existence of Solutions of Generalized Quasi-Variational Relation Problems by the Inductive Relations and Some Applications, Journal of Systems Science and Complexity (EI核心), 2016 Vol. 29 (1): 219-227

[30] Jian Yu, Neng-Fa Wang(通讯作者) and Zhe Yang. Equivalence results between Nash equilibrium theorem and some fixed point theorems. Fixed Point Theory and Applications (2016) 2016:69.

[31] Jian Yu, Zhe Yang(通讯作者), Neng-Fa Wang. Further results on structural stability and robustness to bounded rationality. Journal of Mathematical Economics (经济学二类) 67 (2016) 49–53


2017年

[32] Yang Zhe(通讯作者), Essential stability of α-core, International Journal of Game Theory(经济学三类), (2017) 46:13–28

[33] 王能发,杨哲,刘自鑫, 一般经济均衡价格点集的通有稳定性和本质连通区, 系统科学与数学, 37(1)(2017, 1).

[34] Yang Zhe(通讯作者), Dawen Meng, Hadamard well-posedness of the $\alpha-$core, Journal of Mathematical Analysis and Applications (SCI一区). Volume 452, Issue 2, 15 August 2017, Pages 957–969.

[35] Yang Zhe(通讯作者), Dawen Meng (通讯作者), Anqiang Wang, On the existence of ideal Nash equilibria in discontinuous games with infinite criteria, Operations Research Letters (管理学二类), In Press, Accepted Manuscript, Available online 20 May 2017.

[36] Yang Zhe, Some infinite-player generalizations of Scarf's theorem: Finite-coalition α-cores and weak α-cores. Journal of Mathematical Economics (经济学二类), Volume 73, December 2017, Pages 81-85

[37] 王能发,杨哲, The well-posedness for generalized fuzzy games, Journal of Systems Science and Complexity (EI核心), (2017) 30: 921–931.


2018年

[38]Yang Zhe(通讯作者), Anqiang Wang, Existence and stability of $\alpha-$core for fuzzy games, Fuzzy Sets and Systems (SCI一区). Accept.



项目情况
2013上海教委晨光计划:非连续博弈的合作均衡
2015国家自然科学基金:合作均衡的本质稳定性研究
上海财经大学经济学院